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Abstract
A significant portion of driving hazards is caused by human error and disregard
for local driving regulations; Consequently, an intelligent assistance system can be
beneficial. This paper proposes a novel vision-based modular package to ensure
drivers’ safety by perceiving the environment. Each module is designed based
on accuracy and inference time to deliver real-time performance. As a result, the
proposed system can be implemented on a wide range of vehicles with minimum
hardware requirements. Our modular package comprises four main sections: lane
detection, object detection, segmentation, and monocular depth estimation. Each
section is accompanied by novel techniques to improve the accuracy of others
along with the entire system. Furthermore, a GUI is developed to display perceived
information to the driver. In addition to using public datasets, like BDD100K, we
have also collected and annotated a local dataset that we utilize to fine-tune and
evaluate our system. We show that the accuracy of our system is above 80% in all
the sections. Our code and data are available on GitHub.

1 Introduction
As the number of vehicles on the road has grown in recent years, traffic violations, accidents, and
fatalities have increased considerably [13]. However, along with the growth in urban traffic, human
error plays a significant role in the frequency of road casualties and offenses, in a way that careless
driving and disregard for traffic signs account for more than 70% of street accidents [6]. Hence,
providing a realistic solution to improve driving accuracy and road safety could be highly beneficial.
Artificial intelligence has advanced many fields, including the automotive industry [2, 22, 23]. Some
companies have offered autonomous vehicles as an alternative to human driving [24], but they are
still not commonly used by the public due to their high cost.

Road lane detection is a significant part of the perception system to determine the vehicle’s position
and its desired trajectory on the road, which remains problematic in intelligent vehicles. The
challenges of this problem include disordered, fading, and unreasonable road markings, along with
various lighting conditions. Furthermore, road lines might be occluded by other cars and obstacles.
Early lane detection methods include classical image processing techniques based on image edges,
and the Hough transform [32, 38, 42, 59, 54]. Despite their simplicity, these algorithms require
environment-dependent hyperparameter adjustments. [41] presents a hybrid method based on object
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Figure 1: Overview of the proposed system. Continuous lines represent system modules’ main data
path, and dashed lines denote the additional data, which aids in the accuracy of the system.

detection to improve lane detection accuracy. On the other hand, deep learning-based methods such
as Point Instance Network (PINet) [31] and LaneATT [55] offer precise and robust performance
in multiple scenarios with different lighting conditions, and occlusions [44, 36, 1, 20]. As a result,
deep-learning-based approaches are considered a better choice for practical applications.

Object Detection methods are used to detect various objects in the environment. Most detectors
feed an image into an artificial neural network and output bounding box locations for each object
present in the image and probability scores corresponding to each object class. The detector’s head
connecting to the backbone is usually one or two-stage. One-stage detectors, for instance, YOLO
and SSD, are generally much faster than their two-stage counterparts [26, 7, 47], while two-stage
detectors, like the R-CNN family, tend to yield more outstanding accuracy scores [37, 34, 16, 15, 50].
Our first use of object detection is detecting pedestrians and other vehicles, static and dynamic; this is
done to avoid collisions with other objects on the road. Secondly, traffic indicators are detected to
ensure vehicles follow the regulations on different roads [12].

An intelligent system should accurately identify the road-sidewalk boundaries and measure its distance
from detected objects to prevent accidents. In this case, pixel-wise classification of an image (semantic
segmentation) offers impressive accuracy in determining the boundary by recognizing the sidewalk
[40, 8, 53, 61, 51, 5]. In addition, perspective transform approaches [28, 57] that estimate the distance
based on the warped image’s pixel spacing and monocular depth estimation methods [58, 39, 10, 33]
that measure the distance based on the depth map and camera parameters have shown promising
results. However, the accuracy of perspective-transform-based approaches is highly dependent on
the situation and cannot perform well in all conditions. Moreover, it is not a computationally cost-
effective solution to measure the distance and detect the sidewalk individually through different
models. For this purpose, models based on multi-task learning can be advantageous since they
output both semantic segmentation and depth estimation in one model [64, 62, 9]. These models
simultaneously enhance the accuracy of segmentation and depth estimation through their mutual
effect during training. For instance, SGDepth [30] outputs the estimated depth map and semantic
segmentation from a single input image. In this research, we have developed a comprehensive
package for real-time environmental perception based on computer vision techniques to assist drivers
in minimizing driving faults and violations. To the best of our knowledge, we have provided a novel
combination of traits, and only a few studies are available on the permutations of features mentioned
in this paper. For instance, compared to the YOLOP[60] network, this network lacks depth estimation
and distance measurement, whereas our package is more extensive. There are two aspects to our
real-time intelligent package: software and hardware. The software section consists of four main
phases. For the road lane detection part, our module benefits from the PINet [31] neural network,
which is trained on the CULane [52] dataset and fine-tuned on our collected local dataset. For the
object detection section, we utilize YOLOv5 [27] for detecting vehicles, pedestrians, and traffic signs.
In the third phase, we use the SGDepth [30] network for segmentation tasks and recognizing the
sidewalks. Finally, we introduce a novel approach for measuring the distance to the surrounding
cars based on the monocular depth estimation output from the SGDepth. In terms of hardware,
this module uses only one camera and a mid-range GPU, reducing costs and making it effortless to
implement on various vehicles.
2 Background
2.1 PINet
The Point Instance Network (PINet) detects traffic lines regardless of their number [31]. It generates
points on lanes and separates them into distinct instances. As illustrated in Fig 2, three output
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Figure 2: The overview of PINet [31].
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Figure 3: The overview of SGDepth [30].

branches are included in this network: a confidence branch, an offset branch, and an embedding
branch. Predicting the exact points of traffic lines is what the confidence and offset branches do. The
embedding branch creates the embedding features of the predicted points, which are provided in
the clustering process to differentiate each instance. First, the input RGB image enters the resizing
network, and the sequence of three convolution layers compresses the image into a lower size. After
each convolution layer, PReLU [21] and Batch Normalization [25] are used. Then, the predicting
network receives the resizing network output. It predicts the exact points on the traffic lines as well
as embedding features. There are multiple hourglass modules in this network, each with an encoder,
decoder, three output branches, and some skip-connections. The predicting network can include any
number of hourglass modules, and all of them are trained concurrently by the same loss function.
Therefore, in the case of running the trained model on a system with limited computing power, the
network can be cut and transferred without extra training. Hourglass blocks have three types of
bottlenecks: same, down, and up bottlenecks. The output of the same bottleneck is the same size as
the input. In the encoder, the down bottleneck is used for down-sampling, with the first layer of a
convolution layer, and in the up-sampling layer, a transposed convolution is used for the up bottleneck.
Each output branch has its own channel (confidence: 1, offset: 2, embedding: 4). The associated loss
function is applied based on the output branch’s goal, and each confidence output is passed on to the
following block. The PINet network loss function equation consists of four different loss functions.
Three of them (confidence, offset, and feature loss functions) are parallel and are applied to the
network output branch. The other one (distillation loss function) optimizes the knowledge-learning
process from the deepest hourglass, which is beneficial if the prediction network is cut to a lighter one.
The total loss function equals the weighted sum of the above four loss functions, as shown below:

Ltotal = γeLexist + γnLnon−exist + γoLoffset + γfLfeature + γdLdistillation. (1)

Where constant coefficients are obtained experimentally.

2.2 YOLO
YOLOv5 [27] network is a single-stage detector which consists of three vital parts. The backbone,
the initial element, extracts image features at various scales. The neck, which merges the retrieved
features, is the second element. And the network head predicts the box and class of each object in the
picture using the features coming from the neck. Eventually, Yolo encodes all the information into a
single tensor for each image [48]. YOLO models the detection problem as regression by dividing the
input image into an S × S grid. Each grid cell predicts B bounding boxes with x, y, w, and h, and
an “objectness” score P (Object), which indicates whether or not the grid cell contains an object.
In addition, a conditional probability P (Class | Object) is predicted for the class of the object
associated with each grid cell. Therefore, YOLO outputs B × 5 parameters and C class probabilities
for each grid cell. These predictions are represented by a tensor with the size S × S × (B × 5 + C).
Non-Maximum Suppression (NMS) and thresholding are the last steps in generating final object
detection predictions [48]. The network parameters are trained by minimizing a three-element loss
function called GIoU, Objectness, and Classification. The GIoU element minimizes bounding box
prediction error, and the objectness element determines the existence of an object in a grid cell.
Finally, the classification error is responsible for object class prediction. YOLOv5 benefits from
previous version features, but it is implemented in PyTorch rather than Darknet, making it more
flexible with computer vision libraries.

2.3 SGDepth
SGDepth is a novel monocular self-supervised approach to estimate depth information from single
images. This process is semantically-guided, meaning it utilizes information obtained from segmen-
tation maps and does not require depth labels. As shown in Fig. 3, the approach consists of two main
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components: the depth part, which is trained in a self-supervised fashion, and the segmentation part,
which utilizes a supervised training scheme. For models to estimate depth maps from sequences of
images, the world must be static, i.e., in two consecutive frames of a video, all objects must remain
in their absolute positions. Moving dynamic-class (DC) entities, including passing vehicles and
pedestrians, violate the static world assumptions. Hence, while being necessary for self-supervised
depth estimation, correct projections could not be calculated between sequences of frames. In the
training phase, SGDepth ignores such objects in their optimization.

Self-Supervised Monocular Depth Estimation. Instead of training the model on depth labels in
a supervised manner, the predicted depth maps are then considered as geometric properties of the
environment to warp the preceding and succeeding frames xt′ , with t′ ∈ T ′ = {t−1, t+1} to xt at
time t. Afterward, a photometric loss Jph

t is computed between xt and xt′→t; this is to ensure that
the transformed images xt′→t, are as close as possible to xt. On top of that, a smoothness loss is
responsible for making sure that nearby pixels have similar depth values [17, 18].

Supervised Semantic Segmentation. A segmentation mask mt ∈ SH×W , where S is a set of
classes, is obtained by assigning a class to each pixel coordinate. This is done through a supervised
training method, and the segmentation head (Fig. 3) outputs yt ∈ IH×W×S are compared to the
ground truth labels yt using a weighted cross-entropy loss [43].

Semantic Guidance. As shown in Fig. 3, there are two decoders attached to one encoder (Feature
Extractor block). In the backward propagation stage, the gradients that return from the two decoders
are scaled to form gtotal that is propagated back into the decoder. This is how multi-task training
is done across the two domains. To deal with moving DC objects, projected segmentation maps
are calculated using nearest-neighbor sampling. In addition, a DC object mask µt ∈ {0, 1}H×W

is computed that has zero values for all pixel coordinates that belong to a DC class SDC in either
one of the three frames. This mask is then applied to compute a semantically-masked photometric
loss. If a DC object has moved in two consecutive frames, the warped semantic mt′→t,i and the
semantic mask mt will be inconsistent. To measure this, intersection over union (IoU) of DC objects
in mt′→t,i and mt is calculated and denoted as Λt,t′ . Then a threshold θΛ ∈ [0, 1] is used to decide
whether a frame is static or dynamic, where photometric loss or masked photometric loss is applied,
respectively. After this, the total loss will be a combination of the cross-entropy loss and smoothness
loss, as well as the photometric losses.

3 Method
As previously mentioned, our modular intelligent system includes four parts. In the lane detection
section, a series of operations are carried out to display the road lines on the module screen. This
section aims to help drivers keep their position in the lane and notice their deviation from the off-road
side. In the object detection section, surrounding objects, such as obstacles on the road and traffic
signs, are detected so that the system alerts drivers to route appropriately and follow traffic laws. In
the segmentation section, the segments of the sidewalks are shown on the screen during the semantic
segmentation process, which aids drivers in precepting their environment. Finally, in the distance
measurement part, the distance from the nearby cars is estimated using a monocular depth estimation
approach to avoid collisions and accidents.

Each of the four module’s parts utilizes a base deep learning model, but some do not have a robust
and proper result, necessitating some creativity to solve problems. The method section describes how
issues are overcome and what novelties are employed to boost the models’ performance and create an
intelligent modular system. Fig. 1 illustrates the overall system diagram.

3.1 Lane Detection
We have used the PINet model for the lane detection part because, as observed from the experiments
done and given in Table 5, it has demonstrated greater accuracy than other rivals while maintaining
the required Frame Per Second (FPS). However, the model requires considerable processing power,
which results in a noticeable drop in FPS in the performance of our entire module, so PINet is
considered a trade-off between accuracy and FPS.

Although PINet shows accurate results for determining road lines, some environmental conditions,
like poor illumination, cause severe errors in PINet prediction. In these cases, traffic lines are detected
outside the road space. As a result, a novel dynamic region of interest (ROI) is designed and applied to
the image to avoid off-road lines being identified. Our experiments show that all issues are addressed
after adding this modified ROI to the PINet output, which can be seen in Fig. 4.
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Building the modified ROI begins with deriving the road mask from the segmentation map output of
the SGDepth. The road mask may have some empty areas caused by removing vehicles and objects
from the road. Next, the convex hull approach is used on the road segment to obtain a convex space
covering all the road mask edges [4]. After this, a modified and seamless ROI is obtained from the
road by filling the convex space gaps. The utilized convex hull formula is as follows:

ROI = Co(X) =

{
q∑

i=1

αixi | xi ∈ X,αi ⩾ 0,

q∑

i=1

αi = 1

}
(2)

Where X = {x1, x2, . . . , xq} denotes a set of points whose covered area is extracted by the convex
hull. Morphological erosion and dilation are also applied for noise canceling and creating soft margins
for the mask [19]. The erosion of the binary mask by the structuring element B is defined by:

ROI ⊖B = {z ∈ E | Bz ⊆ ROI } (3)

Where E is a Euclidean space, the structuring element B is a circular disc in the plane, and Bz is the
translation of B by the vector z. Also, the dilation of the binary mask by the structuring element B is
defined by:

ROI ⊕B = {Z ∈ E | (Bs)z ∩ ROI ̸= ∅} (4)

Where E and B are the same as above, and Bs denotes the symmetric of B. Finally, by applying the
modified ROI to the input image, the surroundings are removed, and only the in-road detected lines
remain, which specify lanes.

Input frame PINet output (Contains errors)

SGDepth output (Road mask) Modified ROI

Output (Modified ROI)

(a) Building the modified ROI 

Input frame PINet output Fine-tuned PINet output 

(b) Our introduced dataset effect

Figure 4: Summary of the implemented method in
the lane detection section.

Another challenge at this stage is facing roads
and ROIs that do not contain traffic lines. To
solve this, we introduce a new dataset contain-
ing local images collected by us in which roads
do not include traffic lines. In the next step,
traffic lines are labeled manually, and the net-
work is fine-tuned on a combination of our in-
troduced dataset with pre-existing datasets. As
a result, due to the key point extraction nature of
PINet, key points, even in the absence of white
lines and in noisy conditions, are extracted well,
and the fine-tuned PINet is able to divide the
road into hypothetical lanes. The dataset intro-
duced in this section is available on the project’s
GitHub.

3.2 Object Detection
For the object detection part, the YOLO network has been used, which is a state-of-the-art, real-time
object detection system. We have chosen the YOLOv5 version because, as shown in Table 6, it
provides significantly higher accuracy and FPS compared to its counterparts. Utilizing the pre-trained
YOLO object detection model, vehicles and pedestrians are detected, and bounding boxes are drawn
around them on the monitor to alert the driver. However, identifying traffic signs is challenging since
solely detecting them is not sufficient; it is necessary to recognize their meaning so that the driver can
follow them. As a result, the YOLO network has been fine-tuned using a combination of multiple
traffic signs datasets to both detect them and also identify the type of traffic signs.

The final acquired dataset includes fifteen traffic signs, most of which are similar in shape (e.g.,
circular with a red margin) but different in meaning. As a result of fine-tuning the model on this
dataset, the traffic signs are accurately identified. After a sign is detected, the name of the sign is
displayed on the driver’s monitor, depending on the type of detected sign.

Also, for identifying the traffic lights’ colors, after using the YOLO and detecting the traffic lights,
we use a lightweight CNN-based classifier based on RegNetY002 [45] to classify four classes of
red, yellow, green, and off states. When a traffic light is detected, the identified color of the light
determines the displayed message. If the light is green, the word “pass” displays, and if the light is
yellow or red, the words “warning” or “stop” display, respectively.

The results of the object detection section are improved compared to the network’s initial version
after gathering the datasets and applying the modifications mentioned above, as shown in Table 2.
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Figure 5: The overview of distance measurement approach. In the first stage, the object of interest
is derived from the input image. Then the distance from the perceived object is determined in the
second stage.

3.3 Segmentation
We utilize image segmentation for two primary purposes: a) avoiding curb collisions by detecting
sidewalks and b) accurately measuring the distance from the vehicle to other objects. In the SGDepth
model, which is a multi-task learning network, both the tasks of measuring the distance through the
monocular depth estimation approach and separating the sidewalk segment from the road are done
at the same time. Typically, environmental conditions have a significant influence on the accuracy
of the model. Still, by employing this multi-tasking method, the extracted features of both tasks are
shared in the network, leading to generalization and better results.

SGDepth is trained on the Cityscapes dataset [11], and we use the sidewalk, car, and bus classes
to segment the scene with respect to said class labels. In addition, sidewalks will be colorized and
displayed on the monitor. Since the segmentation is usually quite noisy, the approach still needs some
novelties and modifications to perform appropriately. We deploy contour analysis and convex hulls
to alleviate the sharp edges segmentation map. First, we use morphological functions to dilate the
segmented area for each class and fill the holes inside the map that are the outcome of environmental
noise. After that, the contours belonging to each semantic class are detected and sorted based on their
encapsulating area, and contours whose area is smaller than a constant threshold are discarded. The
remaining contours are then converted to convex hulls to compensate for the concavity that might
occur in some instances. This way, the imperfections present in the initial segmentation map will be
resolved considerably, and a much smoother segmentation map will be obtained.
3.4 Distance Measurement
In this section, we propose a novel hierarchical approach that exploits SGDepth and YOLO outputs
to attain an accurate distance measurement. Our method consists of two major stages. The first stage
is responsible for perceiving the object of interest in the scene. A more in-depth object analysis is
achieved in the second stage to obtain the final distance measurement.

Since SGDepth operates on the entire scene, it is vital to identify the surrounding objects first.
Therefore, as seen in Fig. 5, the object detection output is used to crop the detected object depth map
and its segmentation mask based on the bounding box coordinates. We then take advantage of the
acquired mask and apply it to the detected depth map to remove the background.

In order to eliminate the effect of zero-pixel values, we replace them with NaN to not affect the
distance measurement calculations. The obtained mask may contain pixels from the background
that are assumed to be outliers, and their presence may negatively affect distance measurement. To
mitigate their impact, we apply min pooling on the depth map with a kernel size of 3 × 3 in the
second stage. Min pooling operation with the kernel size of K is defined as follows

Ís,p = min(Ii+K×s,j+K×p) Min Pooling : IH×W −→ Í⌈H
K ⌉×⌈W

K ⌉ (5)

for i = j = 0, 1, ...,K − 1, where s ∈ S =
{
0, 1, ...,

⌈
H
K

⌉
− 1

}
, and p ∈ P =

{
0, 1, ...,

⌈
W
K

⌉
− 1

}
determine the set of new coordinates after applying min pooling. To ensure noisy depth points are
not involved in the measurement procedure, we propose a Gaussian Noise Removal module that
fits a Gaussian distribution on the depth values. Points whose distances are within an interval of
[µ− 2σ, µ+ 2σ] are known as inliers and remain, while the rest of the points will be excluded and
given NaN value to not participate in the distance measurement process. The goal of the Gaussian
Noise Removal module is to find inlier points such that

Inlier Points =
{
Ís,p|µ− 2σ < Ís,p < µ+ 2σ

}
(6)
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Table 1: Evaluation of the
sidewalk and lane segmenta-
tion sections.

IoU Confidence

Lane Local 0.861 91.38%
BDD100K 0.842 89.11%

Sidewalk Local 0.795 85.34%
BDD100K 0.762 80.23%

Table 2: Evaluation of the object de-
tection section.

Precision Recall F1-Score Accuracy

Vehicles Local 96.43% 85.71% 90.75% 83.08%
BDD100K 94.92% 85.62% 90.03% 81.87%

Pedestrians Local 95.24% 90.91% 93.02% 86.96%
BDD100K 92.59% 89.28% 90.91% 83.33%

Traffic Signs Local 93.33% 87.5% 90.32% 82.35%
BDD100K 88.88% 94.12% 91.43% 84.21%

Traffic Lights Local 94.74% 90.00% 92.31% 85.71%
BDD100K 93.55% 85.29% 89.23% 80.56%

Table 3: Evaluation of the
distance measurement sec-
tion.

mean RA Accuracy

Distance Local 84.30% 88.37%
BDD100K 78.04% 82.91%

where σ and µ denote standard deviation and mean, respectively. In addition, it is necessary to apply
average pooling to the acquired depth map for two main reasons, (i) to smooth the depth values
and ignore the remaining sharp values, and (ii) to achieve an accurate value to report as distance.
However, one of the challenging problems of estimating the distance is the object’s image size, and
applying the prior min pooling would reduce its spatial dimensions by a factor of three. As a result,
the kernel size of average pooling should be compatible with the object depth map size to guarantee
we have enough depth points for the measurement step. Hence, to satisfy the objects with large and
small depth map sizes, we propose a grouped average pooling with different kernel sizes, which are
2× 2, 3× 3, and 5× 5. The output of each average pooling is then flattened and concatenated. The
NaN Removal module is subsequently employed to eradicate NaN values. Eventually, the distance to
the surrounding objects is obtained by global averaging the resultant depth points.

4 Experiments
For traffic sign detection, we needed both richness and diversity in the signs. To this end, we used
a combination of the DFG Traffic Sign Dataset [56] and Traffic-Sign Detection and Classification
in the Wild dataset [66]. Furthermore, we used the Common Objects in Context (COCO) dataset
[35] for the detection of pedestrians and other vehicles. To evaluate the overall performance of our
proposed system in all sections, we combined the BDD100K dataset with our collected local dataset.
BDD100K [63] is an extensive collection of 100,000 short videos of driving in various weather and
driving conditions. Also, our comprehensive local dataset contains 100 fifteen-second 30 FPS videos
of vehicles, roads, traffic signs, pedestrians, and sidewalks.

4.1 Hardware Configuration
The proposed modular package requires a high-resolution camera, a GPU, and a display. A 1080p
camera captures images from the vehicle’s perspective, an Nvidia GTX 1660 Ti GPU is in charge
of tensor processing in neural networks, and a display indicates the system’s results and any nec-
essary alarms to the user. In real-world experiments, some additional hardware components are
required for implementation, so a laptop is employed as the hardware framework in the vehicle
to avoid this complexity. Fig. 6 shows the mentioned system implemented in a standard vehicle.

System

Camera

Graphical User Interface (GUI)

Figure 6: Implementation of the system in the ur-
ban environment. The hardware components in-
clude the camera, and the laptop, as a platform for
running the package. The output information is
displayed to the driver using the GUI.

4.2 Experimental Results
Our intelligent system evaluation consists of
three phases: assessment of area recognition
sections, object detection parts, and distance
measurement. Evaluations are performed on
500 frames extracted from the system’s output
on the BDD100K video dataset and our local
dataset. The area recognition section includes
detecting sidewalks and traffic lanes. The object
detection section comprises identifying pedes-
trians, parked and moving vehicles, traffic signs,
and traffic lights with their colors. Finally, dis-
tance labels have been utilized to evaluate the
distance measurement section. The assessment
methods for each step and the result tables are
explained below.

Lane and sidewalk segmentation. The segmentation of lane areas and sidewalk is evaluated using
the Intersection over Union (IoU) metric, which is the intersection of the predicted and labeled masks
per their union. The road lane masks are derived from the regions between the detected lines located
in the modified ROI, and the sidewalk masks are the SGDepth modified outputs. These masks are
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a) Ground Truth b) Results

Figure 7: The proposed system results on the
BDD100K dataset.

a) Ground Truth b) Results

Figure 8: The proposed system results on the local
dataset.

Table 4: Real-time Evaluation of the System

Method YOLOv5 (Object) YOLOv5 (Sign) PINet SGDepth FPS
Ours ✓ ✓ ✓ ✓ 7.56

A ✓ ✗ ✗ ✗ 66.06
B ✗ ✓ ✗ ✗ 69.40
C ✗ ✗ ✓ ✗ 23.58
D ✗ ✗ ✗ ✓ 47.48

Table 5: Evaluation of different lane detection ap-
proaches. NVIDIA Tesla T4 is used for evaluation.

F1 IoU Confidence FPS

CLRNet [65] Local 48.43% 32.05% 37.38% 47.55BDD100K 50.90% 33.76% 39.83%

CondLaneNet [36] Local 46.52% 32.52% 38.26% 128.75BDD100K 54.66% 37.04% 42.61%
Local 82.57% 74.14% 82.21%PINet [31] BDD100K 76.29% 75.84% 83.55% 24.67

compared to their labels based on the IoU criterion, and a 0.5 threshold is utilized to calculate output
accuracy. The predictions with IoU greater than 0.5 are regarded as valid, and with IoU less than 0.5
are considered false. The acquired results are displayed in Table 1.

Object detection. The performance of our system in object detection is evaluated using precision,
recall, F1-score, and accuracy criteria. Notably, detected traffic lights are evaluated as a correct
prediction only if their color is classified correctly, as recognizing traffic lights without interpreting
their color would not result in getting the right traffic message. The findings are shown in Table 2,
which indicates that the system’s accuracy is not less than 80% in any subsection.

Distance measurement. We utilize relative accuracy (RA) as a metric for the accuracy of the
distance measurement section of our proposed system. Relative accuracy is defined using the
following formula:

RA = 1− |Distanceactual −Distancepredicted|
Distanceactual

(7)

If RA is greater than 0.8, then the predicted value for distance is considered correct. Afterward, the
accuracy of our system is the percentage of the correct predictions in the entire dataset. The system
accuracy and mean relative accuracy are reported for both local and BDD-100k datasets in Table 3.

Figs.7-8 show the performance results of the proposed perception system on local and BDD100K
datasets. A graphical user interface (GUI) is also placed on the right side to represent traffic
information to the driver. The GUI information includes traffic light status, traffic signs, and the
distance to the nearest car so that the driver can be aware of the situation at a glance.

5 Ablation Study
Real-time Evaluation of the System. Table 4 presents the FPS of the whole system and each
module individually. Notably, the FPS value for each module is computed from the time spent
on preprocessing, model output, and postprocessing. According to Table 4, our system achieves
a noticeable 7.56 average FPS over BDD100K and local datasets while demonstrating impressive
quantitative and qualitative results. A considerable amount of processing time is spent by the PINet
model that we have chosen due to its distinctive outputs. Although some other models operate in
real-time, they do not have the generalization ability shown by PINet (see Table 5). In addition, part
of the system’s processing is utilized to display the UI and model outputs, all of which reduce the
processing time of the entire system. Nevertheless, the 7.51 average FPS is a reasonable quantity
for running the model in real-time and obtaining satisfactory results. Furthermore, Human Reaction
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Time (HRT) in driving is the time between when the driver is placed in a critical situation and when
he decides to take action [29]. While a constant value for HRT cannot be reported, different methods
report values between 1.27s to 1.55 [46, 3]. We believe that our system is real-time because its overall
response time is more than six times less than that of humans. It is possible to connect our module to
the vehicle’s braking system so that it can slow down in critical situations; this adds the benefit of
much faster response times compared to that of humans, rendering our system real-time.

Ablation on Lane Detection We evaluate different SOTA approaches in lane detection on our
proposed local and BDD100k datasets in terms of F1 accuracy, IoU, confidence, and FPS. IoU is first
computed between predictions and ground truth, and lanes whose IoU exceeds a threshold (0.5) are
considered true positives (TP). It is evident in Table 5 that despite CondLaneNet [36] and CLRNet’s
[65] high FPS, their accuracy is significantly inferior to PINet’s. Therefore, this gives us the insight
that such approaches are not generalizable across different environments. Specifically, they failed
when no lines were present in the scene or when other environmental objects obscured the lines.
PINet, however, has shown promising results when tested in a new setting, despite some errors that
often occur under poor lighting conditions, which we have discussed in 3.1 on how to improve it.
Overall, we have selected PINet as our lane detector since it delivers the requisite FPS for the system’s
real-time performance while attaining high accuracy in recognizing lanes.

Ablation on Object Detection. Table 6 exhibits the performance of current SOTA approaches for
the object detection task on our proposed local dataset and BDD100K. Results indicate that despite
the slight difference between approaches, YOLOv5 [27] outperforms all the latest object detection
methods in terms of mAP, mAP, and FPS, making it the best choice for our object detection module.

Table 6: Evaluation of different object detection ap-
proaches. NVIDIA Tesla T4 is used for evaluation.

mAP mAR FPS

YOLOX [14] Local 95.90% 89.27% 59.6BDD100K 90.72% 96.02%

YOLOv3 [49] Local 90.76% 87.94% 37.3BDD100K 85.84% 91.43%

YOLOv4 [7] Local 93.33% 87.50% 32.1BDD100K 88.88% 94.12%
Local 96.01% 90.91%YOLOv5 [27] BDD100K 92.42% 96.28% 90.9

6 Discussion and Limitations
Our experimental results demonstrate the
power of our proposed modular system in
perceiving the environment and safe driv-
ing. The selected networks have been cho-
sen according to the trade-off of accuracy
and FPS compared to their counterparts and
show high accuracy results. The package
FPS can even go higher as the PINet net-
work alone has moderate FPS, and when
this network is added to the package, even while the total package stays in real-time, its speed is
reduced. Also, we may encounter missing frames on rare occasions, but because it is only one frame
in 30 frames, for instance, it is hardly visible. However, by resolving this minor missing frame, the
package’s accuracy will improve. In addition, with the development of the package, we can also
connect it to the brake and gas pedals. In such a way that after detecting the object at a distance less
than a threshold in front of the car, the brake is activated, and the gas pedal is pressed according to
the distance from the front cars and the speed limit. It brings us closer to safe driving without the
high costs of self-driving vehicles. Overall, the perfect integration of multiple networks and applying
appropriate changes to improve their performance, along with the designed GUI, has created a system
that gives the necessary warnings to the driver while driving and reduces the risks of driving.

7 Conclusions
In this paper, we have proposed an intelligent modular vision-based system to assist drivers in safe
driving by alerting them in critical moments. There are four main stages in our proposed system: lane
detection, object and sign detection, sidewalk segmentation, and distance measurement. PINet is used
for lane detection and fine-tuned with a combination of our presented local dataset and BDD100K
to alleviate its line-free road estimation issue. To prevent PINet from being impacted by turbulence
related to the environment, a novel dynamic ROI is applied to the PINet output. Yolov5 has also been
utilized to detect 3 class labels and 15 distinct traffic signs. Moreover, having leveraged SGDepth
outputs, monocular depth estimation, and segmentation, we have developed a novel hierarchical
method to precisely calculate the distance from neighboring vehicles. In addition, a graphical user
interference (GUI) is designed to inform the driver about the traffic light’s status, the nearest distance
from the adjacent vehicles, and information about traffic signs ahead. Extensive experiments on
our local and BDD100K datasets demonstrate that our proposed system performs noticeably well in
different environments with different scenarios and conditions and can be an excellent tool to reduce
human errors. In the future, we will concentrate on making our system more efficient so that it can
operate on embedded boards.
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